An A ∞ structure on simplicial complexes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A-infinity structure on simplicial complexes

A discrete (finite-difference) analogue of differential forms is considered, defined on simplicial complexes, including triangulations of continuous manifolds. Various operations are explicitly defined on these forms, including exterior derivative and exterior product. The latter one is non-associative. Instead, as anticipated, it is a part of non-trivial A ∞ structure, involving a chain of pol...

متن کامل

A duality on simplicial complexes

The usual definition of finite simplicial complex is a set of non-empty subsets of a finite set, closed under non-empty subset formation. For our purposes here, we will omit the non-emptiness and define a finite simplicial complex to be a down-closed subset of the set of subsets of a finite set. We can, and will suppose that the finite set is the integers 0,. . . ,N . We will denote by K the se...

متن کامل

Flows on Simplicial Complexes

Given a graph G, the number of nowhere-zero Zq-flows φG(q) is known to be a polynomial in q. We extend the definition of nowhere-zero Zq-flows to simplicial complexes ∆ of dimension greater than one, and prove the polynomiality of the corresponding function φ∆(q) for certain q and certain subclasses of simplicial complexes. Résumé. Et́ant donné une graphe G, on est connu que le nombre de Zq-flot...

متن کامل

A Cheeger-Type Inequality on Simplicial Complexes

In this paper, we consider a variation on Cheeger numbers related to the coboundary expanders recently defined by Dotterer and Kahle. A Cheeger-type inequality is proved, which is similar to a result on graphs due to Fan Chung. This inequality is then used to study the relationship between coboundary expanders on simplicial complexes and their corresponding eigenvalues, complementing and extend...

متن کامل

Simplicial Moves on Balanced Complexes

We introduce a notion of cross-flips: local moves that transform a balanced (i.e., properly (d + 1)-colored) triangulation of a combinatorial d-manifold into another balanced triangulation. These moves form a natural analog of bistellar flips (also known as Pachner moves). Specifically, we establish the following theorem: any two balanced triangulations of a closed combinatorial d-manifold can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical and Mathematical Physics

سال: 2008

ISSN: 0040-5779,1573-9333

DOI: 10.1007/s11232-008-0093-9